Sunday, 8 October 2017

POTASSIUM CHLORATE[KClO3]



·         CAS Number 3811-04-9

·         Linear Formula KClO3

·         Molecular Weight 122.55

·          EC Number 223-289-7
·          MDL number MFCD00011361

·          PubChem Substance ID 329752797


Potassium chlorate is a compound containing potassium, chlorine and oxygen atoms, with the molecular formula KClO3. In its pure form, it is a white crystalline substance. It is the most common chlorate in industrial use.

Detailed Description:

 It is used
·         as an oxidizing agent,
·         to prepare oxygen,
·         as a disinfectant,
·         in safety matches,
·         in explosives and fireworks,
·         in cultivation, forcing the blossoming stage of the longan tree, causing it to produce fruit in warmer climates.

Uses

Potassium chlorate was one key ingredient in early firearms percussion caps (primers). It continues in that application, where not supplanted by potassium perchlorate.
Chlorate-based propellants are more efficient than traditional gunpowder and are less susceptible to damage by water. However, they can be extremely unstable in the presence of sulfur or phosphorus and are much more expensive. Chlorate propellants must be used only in equipment designed for them; failure to follow this precaution is a common source of accidents. Potassium chlorate, often in combination with silver fulminate, is used in trick noise-makers known as "crackers", "snappers", "pop-its", or "bang-snaps", a popular type of novelty firework.
Another application of potassium chlorate is as the oxidizer in a smoke composition such as that used in smoke grenades. Since 2005, a cartridge with potassium chlorate mixed with lactose and rosin is used for generating the white smoke signalling the election of new pope by a papal conclave.[10]
Potassium chlorate is often used in high school and college laboratories to generate oxygen gas.[citation needed] It is a far cheaper source than a pressurized or cryogenic oxygen tank. Potassium chlorate readily decomposes if heated while in contact with a catalyst, typically manganese(IV) dioxide (MnO2). Thus, it may be simply placed in a test tube and heated over a burner. If the test tube is equipped with a one-holed stopper and hose, warm oxygen can be drawn off. The reaction is as follows:
2 KClO3(s) → 3 O2(g) + 2 KCl(s)
Heating it in the absence of a catalyst converts it into potassium perchlorate:[9]
4 KClO3 → 3 KClO4 + KCl
With further heating, potassium perchlorate decomposes to potassium chloride and oxygen:
KClO4 → KCl + 2 O2
The safe performance of this reaction requires very pure reagents and careful temperature control. Molten potassium chlorate is an extremely powerful oxidizer and spontaneously reacts with many common materials such as sugar. Explosions have resulted from liquid chlorates spattering into the latex or PVC tubes of oxygen generators, as well as from contact between chlorates and hydrocarbon sealing greases. Impurities in potassium chlorate itself can also cause problems. When working with a new batch of potassium chlorate, it is advisable to take a small sample (~1 gram) and heat it strongly on an open glass plate. Contamination may cause this small quantity to explode, indicating that the chlorate should be discarded.
Potassium chlorate is used in chemical oxygen generators (also called chlorate candles or oxygen candles), employed as oxygen-supply systems of e.g. aircraft, space stations, and submarines, and has been responsible for at least one plane crash. A fire on the space station Mir was also traced to this substance. The decomposition of potassium chlorate was also used to provide the oxygen supply for limelights.
Potassium chlorate is used also as a pesticide. In Finland it was sold under trade name Fegabit.
Potassium chlorate can react with sulfuric acid to form a highly reactive solution of chloric acid and potassium sulfate:
2 KClO3 + H2SO4 → 2 HClO3 + K2SO4
The solution so produced is sufficiently reactive that it spontaneously ignites if combustible material (sugar, paper, etc.) is present.
In schools, molten potassium chlorate is used in the dramatic screaming jelly babies demonstration.
In chemical labs it is used to oxidize HCl and release small amounts of gaseous chlorine.
Insurgents in Afghanistan also use potassium chlorate extensively as a key component in the production of improvised explosive devices. When significant effort was made to reduce the availability of ammonium nitrate fertilizer in Afghanistan, IED makers started using potassium chlorate as a cheap and effective alternative. In 2013, 60% of IEDs in Afghanistan used potassium chlorate, making it the most common ingredient used in IEDs.

PRICES

$637.87/KG OR $289.94/IB

For more information:

mobile: +2348039721941

contact person: emeaba uche

e-mail: emeabau@yahoo.com





No comments:

Post a Comment