Saturday 7 October 2017

LITHIUM HYDRIDE[LiH]



·         CAS Number 7580-67-8

·         Linear Formula LiH

·         Molecular Weight 7.95

·          EC Number 231-484-3
·          MDL number MFCD00011074

·          PubChem Substance ID 24851992

Lithium hydride is an inorganic compound with the formula LiH. This alkali metal hydride is a colorless solid, although commercial samples are grey. Characteristic of a salt-like, or ionic, hydride, it has a high melting point and is not soluble but reactive with all organic and protic solvents; it is soluble and non-reactive with certain molten salts such as lithium fluoride, lithium borohydride, and sodium hydride.
Detailed description
With a molecular mass of slightly less than 8, it is the lightest ionic compound.

Applications

Hydrogen storage and fuel

With a hydrogen content three times that of NaH, LiH has the highest hydrogen content of any hydride. LiH is periodically of interest for hydrogen storage, but applications have been thwarted by its stability to decomposition. Thus removal of H2 requires temperatures above the 700 °C used for its synthesis, such temperatures are expensive to create and maintain. The compound was once tested as a fuel component in a model rocket.[7][8]

Precursor to complex metal hydrides

LiH is not usually a hydride-reducing agent except in the synthesis of hydrides of certain metalloids. For example, silane is produced by the reaction of lithium hydride and silicon tetrachloride via the Sundermeyer process:
4 LiH + SiCl4 → 4 LiCl + SiH4
Lithium hydride is used in the production of a variety of reagents for organic synthesis, such as lithium aluminium hydride (LiAlH4) and lithium borohydride (LiBH4). Triethylborane reacts to give superhydride (LiBHEt3).[9]

In nuclear chemistry and physics

LiH is a desirable material for shielding nuclear reactors and can be fabricated by casting.[10][11]

Lithium deuteride

LiH, especially lithium-7 deuteride, is a good moderator for nuclear reactors, because deuterium has a lower neutron absorption cross-section than aneutronic hydrogen, decreasing neutron absorption in a reactor. Lithium-7 is preferred for a moderator because it has a lower neutron cross-section and also forms less tritium under neutron bombardment.[12]
The corresponding lithium-6 deuteride, formula 6Li2H or 6LiD, is the fusion fuel in thermonuclear weapons. In warheads of the Teller-Ulam design, a fission trigger explosion heats, compresses and bombards 6LiD with neutrons to produce tritium in an exothermic reaction. The deuterium and tritium (both isotopes of hydrogen) then fuse to produce helium-4, a neutron and 17.59 MeV of energy.
Before the Castle Bravo nuclear test, it was thought that only the less common lithium-6 isotope would breed tritium when struck with fast neutrons. The test showed that the more plentiful lithium-7 also does so, albeit by an endothermic reaction.

PRICE

$12324.2/KG OR $5601.90/IB



 For more information:

mobile: +2348039721941

contact person: emeaba uche

e-mail: emeabau@yahoo.com









No comments:

Post a Comment